Development and Application of a Cleaved Amplified Polymorphic Sequence Marker (Phyto) Linked to the Pc5.1 Locus Conferring Resistance to Phytophthora capsici in Pepper (Capsicum annuum L.)

Plants (Basel). 2023 Jul 25;12(15):2757. doi: 10.3390/plants12152757.

Abstract

Phytophthora capsici causes destructive disease in several crop species, including pepper (Capsicum annuum L.). Resistance in this species is physiologically and genetically complex due to many P. capsici virulence phenotypes and different QTLs and R genes among the identified resistance sources. Several primer pairs were designed to follow an SNP (G/A) within the CA_011264 locus linked to the Pc5.1 locus. All primer pairs were designed on DNA sequences derived from CaDMR1, a homoserine kinase (HSK), which is a gene candidate responsible for the major QTL on chromosome P5 for resistance to P. capsici. A panel of 69 pepper genotypes from the Southern Seed germplasm collection was used to screen the primer pairs designed. Of these, two primers (Phyto_for_2 and Phyto_rev_2) surrounding the SNP proved successful in discriminating susceptible and resistant genotypes when combined with a restriction enzyme (BtgI). This new marker (called Phyto) worked as expected in all genotypes tested, proving to be an excellent candidate for marker-assisted selection in breeding programs aimed at introgressing the resistant locus into pure lines.

Keywords: CAPS markers; Capsicum annuum; Phytophthora capsici; marker-assisted selection; soil-borne pathogens.

Grants and funding

This research received no external funding.