Microstructure and Mechanical Properties of Low-Cost SiC-Reinforced Aluminum and Al4Cu Matrix Composites Produced by Sintering in Vacuum

Materials (Basel). 2023 Aug 7;16(15):5492. doi: 10.3390/ma16155492.

Abstract

Composite materials based on Al and Al4Cu with the addition of SiC particles (2.5; 5; 7.5; 10 wt.%) were produced in low-cost conventional powder metallurgy processes involving mixing, compacting with a pressure of 300 MPa, and sintering at 600 °C in a vacuum atmosphere. An attempt was made to create a relationship between the vacuum sintering and the microstructure and mechanical properties of Al/SiC composites. The strength of the matrix-reinforcing interface depends on the chemical composition of the components; therefore, the influence of 4 wt.% copper in the aluminum matrix was investigated. Comprehensive microstructural and mechanical properties (including Brinell hardness, compressive and flexural strength measurements) of the produced composites were measured. The addition of 2.5 wt.% SiC to the Al4Cu matrix improved the mechanical properties of the composites compared to the matrix. In the composite with the addition of 2.5 wt.% of SiC, while the addition of the reinforcement did not affect the hardness and compressive strength and caused a rapid decrease in the flexural strength compared to the aluminum matrix, the addition of Cu to the matrix of this composite improved hardness (from 25 to 49 HB), compressive strength (from 423 to 618 MPa), and flexural strength (from 52 to 355 MPa).

Keywords: aluminum matrix composites; mechanical properties; microstructure; powder metallurgy; vacuum sintering.

Grants and funding

This research received no external funding.