Structural, Electronic, and Mechanical Properties of Zr2SeB and Zr2SeN from First-Principle Investigations

Materials (Basel). 2023 Aug 3;16(15):5455. doi: 10.3390/ma16155455.

Abstract

MAX phases have exhibited diverse physical properties, inspiring their promising applications in several important research fields. The introduction of a chalcogen atom into a phase of MAX has further facilitated the modulation of their physical properties and the extension of MAX family diversity. The physical characteristics of the novel chalcogen-containing MAX 211 phase Zr2SeB and Zr2SeN have been systematically investigated. The present investigation is conducted from a multi-faceted perspective that encompasses the stability, electronic structure, and mechanical properties of the system, via the employment of the first-principles density functional theory methodology. By replacing C with B/N in the chalcogen-containing MAX phase, it has been shown that their corresponding mechanical properties are appropriately tuned, which may offer a way to design novel MAX phase materials with enriched properties. In order to assess the dynamical and mechanical stability of the systems under investigation, a thorough evaluation has been carried out based on the analysis of phonon dispersions and elastic constants conditions. The predicted results reveal a strong interaction between zirconium and boron or nitrogen within the structures of Zr2SeB and Zr2SeN. The calculated band structures and electronic density of states for Zr2SeB and Zr2SeN demonstrate their metallic nature and anisotropic conductivity. The theoretically estimated Pugh and Poisson ratios imply that these phases are characterized by brittleness.

Keywords: Zr2SeB/N; electronic properties; first principles; mechanical properties.