Iron Selenide Particles for High-Performance Supercapacitors

Materials (Basel). 2023 Jul 28;16(15):5309. doi: 10.3390/ma16155309.

Abstract

Nowadays, iron (II) selenide (FeSe), which has been widely studied for years to unveil the high-temperature superconductivity in iron-based superconductors, is drawing increasing attention in the electrical energy storage (EES) field as a supercapacitor electrode because of its many advantages. In this study, very small FeSe particles were synthesized via a simple, low-cost, easily scalable, and reproducible solvothermal method. The FeSe particles were characterized using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS), revealing enhanced electrochemical properties: a high capacitance of 280 F/g at 0.5 A/g, a rather high energy density of 39 Wh/kg and a corresponding power density of 306 W/kg at 0.5 A/g, an extremely high cycling stability (capacitance retention of 92% after 30,000 cycles at 1 A/g), and a rather low equivalent series resistance (RESR) of ~2 Ω.

Keywords: FeSe; energy density; high capacitance; metal selenide electrode.

Grants and funding

This research received no external funding.