Corrosion Resistance of Zinc and Zinc-Aluminum-Magnesium Coatings in Atmosphere on the Territory of Russia

Materials (Basel). 2023 Jul 25;16(15):5214. doi: 10.3390/ma16155214.

Abstract

Zinc-coated carbon steel is commonly used in the construction of buildings, infrastructure objects such as roads and bridges, automotive production, etc. Coatings based on zinc-aluminum-magnesium alloys that may have better corrosion resistance than zinc have been developed. The coatings made of the new alloys have been available on the market for a shorter period of time than conventional zinc coatings. This paper presents data on the corrosion resistance of zinc and zinc-aluminum-magnesium coatings on carbon steel obtained by tests in four locations in Russia with marine and non-marine atmospheres. Four one-year exposures at the beginning of each season and two-year tests were performed. It is shown that the corrosion resistance of the coatings depends significantly on the beginning of the exposure. The categories of atmosphere corrosivity in relation to the coatings were determined at each location. Based on the dose-response function (DRF) for zinc developed for the territory of Russia, DRFs for the coatings were obtained. A match between the categories of atmosphere corrosivity determined by the first-year corrosion losses and estimated from the values of corrosion losses calculated using the DRF is shown. Based on the data of two-year tests, the variation in the corrosion rate over time is obtained. The corrosion rates of the coatings in the territory of Russia are compared to the corrosion rates of coatings observed in various locations around the world. An approximate estimate of the service life of the coatings at the test sites is given.

Keywords: atmosphere corrosivity categories; atmospheric corrosion; hot dip galvanized steel; modeling; service life; zinc-aluminum-magnesium coatings.

Grants and funding