Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification

Int J Mol Sci. 2023 Jul 26;24(15):11960. doi: 10.3390/ijms241511960.

Abstract

The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.

Keywords: CRISPR/Cas9; Saccharomyces cerevisiae; genome editing; genome modifications; yeast; yeast transformation.

Publication types

  • Review

MeSH terms

  • CRISPR-Cas Systems / genetics
  • Gene Editing* / methods
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism