Dissipation Kinetics and Risk Assessment of Diniconazole, Dinotefuran, Metconazole, and Tebuconazole in Raphanus sativus L

Foods. 2023 Jul 27;12(15):2846. doi: 10.3390/foods12152846.

Abstract

This study investigated the degradation characteristics and conducted a risk assessment of four pesticides (Diniconazole, Dinotefuran, Metconazole, and Tebuconazole) in the leaves and roots of radish. Radish was cultivated in two greenhouse fields, and samples were collected at 0, 1, 2, 3, 5, 7, and 10 days after pesticide application. Sample analysis was performed using LC-MS/MS, and the recovery rates ranged from 70.1% to 118.6%. The biological half-life of Diniconazole was found to be 6.2 days (leaf and root), Dinotefuran was 5.3 days (leaf) and 4.6 days (root), Metconazole was 9.3 days (leaf) and 3.2 days (root), and Tebuconazole was 8.0 days (leaf) and 5.1 days (root). After comparing the maximum residue limits (MRL) of each pesticide in Korea with the residues during the pre-harvest interval (PHI), Diniconazole showed a Hazard quotient (HQ) exceeding 1, indicating potential risks for true consumers. Furthermore, Tebuconazole showed an HQ of 0.3 or higher, indicating a significant level of risk.

Keywords: Raphanus sativus; dissipation pattern; pesticides; radish; risk assessment.