Snake-Efficient Feature Selection-Based Framework for Precise Early Detection of Chronic Kidney Disease

Diagnostics (Basel). 2023 Jul 27;13(15):2501. doi: 10.3390/diagnostics13152501.

Abstract

Chronic kidney disease (CKD) refers to impairment of the kidneys that may worsen over time. Early detection of CKD is crucial for saving millions of lives. As a result, several studies are currently focused on developing computer-aided systems to detect CKD in its early stages. Manual screening is time-consuming and subject to personal judgment. Therefore, methods based on machine learning (ML) and automatic feature selection are used to support graders. The goal of feature selection is to identify the most relevant and informative subset of features in a given dataset. This approach helps mitigate the curse of dimensionality, reduce dimensionality, and enhance model performance. The use of natural-inspired optimization algorithms has been widely adopted to develop appropriate representations of complex problems by conducting a blackbox optimization process without explicitly formulating mathematical formulations. Recently, snake optimization algorithms have been developed to identify optimal or near-optimal solutions to difficult problems by mimicking the behavior of snakes during hunting. The objective of this paper is to develop a novel snake-optimized framework named CKD-SO for CKD data analysis. To select and classify the most suitable medical data, five machine learning algorithms are deployed, along with the snake optimization (SO) algorithm, to create an extremely accurate prediction of kidney and liver disease. The end result is a model that can detect CKD with 99.7% accuracy. These results contribute to our understanding of the medical data preparation pipeline. Furthermore, implementing this method will enable health systems to achieve effective CKD prevention by providing early interventions that reduce the high burden of CKD-related diseases and mortality.

Keywords: chronic kidney disease; convolution neural networks; deep neural network; feature selection; machine learning; medical data analysis; snake optimization.

Grants and funding

This research received no external funding.