Uncovering the impact of SARS-CoV2 spike protein variants on human receptors: A molecular dynamics docking and simulation approach

J Infect Public Health. 2023 Oct;16(10):1544-1555. doi: 10.1016/j.jiph.2023.07.011. Epub 2023 Jul 24.

Abstract

Background: The SARS-CoV-2 pandemic, caused by the novel coronavirus, has posed a significant global health threat since its emergence in late 2019. The World Health Organization declared the outbreak a pandemic on March 11, 2020, due to its rapid global spread and impact on public health. New variants have raised concerns about their potential impact on the transmission of the virus and the effectiveness of current diagnostic tools, treatments, and vaccines. This study aims to investigate the effect of new variants in Pakistani virus strains on human receptors, specifically ACE2 and NRP1. In-silico analysis provides a powerful tool to analyze the potential impact of new variants on protein structure, function, and interactions.

Objectives: The SARS-CoV-2 virus is evolving quickly. After being exposed in Wuhan, SARS-CoV-2 underwent numerous mutations, leading to several variants' emergence. These variants stabilize the interaction of spike protein with human receptors ACE2 and NRP1. The study aims to check the molecular effect of these variants on human receptors using the in-silico approach.

Material and methods: We use in-silico mutational tools to analyze new variants in SARS-CoV-2 and to check the molecular interaction of spike protein with human receptors (ACE2 and NRP1). Genomic sequences of 41 SARS-CoV-2 strains were sequenced using Ion Torrent (NGS) and submitted to the GISAID database. Spike protein of SARS-CoV-2 sequence trimmed and translated into a protein sequence using ExPasy. We used multiple sequence alignments to check for variants in the spike protein of strains. We utilized mutation tools such as Mupro, SIFT, SNAP2, and Mutpred2.3D structures of SARS-CoV-2 spike proteins (wild and mutated) to analyze further the mutations, ACE2 and NRP1 modelled by the ITASSER protein modelling server. Interactions of spike proteins (wild and mutant) analyzed by MD Docking, Simulation, and MMGBSA RESULTS: Variants I210T, V213G, S371F, S373P, T478K, F486V, Y505H, and D796Y were identified in SARS-CoV-2 Pakistani strains' spike protein. Variant Y505H were found to affect protein function. MD Docking, MMGBSA and MD simulation revealed that these variants increased spike protein's binding affinity with human receptors (ACE2 and NRP1). MD simulation revealed that mutated spike protein stabilized earlier than wild when interacting with ACE2 after 40 ns and interaction with NRP1 stabilized after 30 ns for mutated spike protein compared to wild.

Conclusion: These variants in Pakistani strains of SARS-CoV-2 are increasing the stability of spike protein with human receptors. These findings provide insight into how the SARS-CoV-2 virus evolves and adapts to human hosts. This information may help develop strategies to control the virus's spread and develop effective treatments and vaccines in the future.

Keywords: ACE2; GISAID; MD Docking; MD Simulation; MMGBSA; NRP1; Spike protein Mutant; Spike protein wild.

MeSH terms

  • Angiotensin-Converting Enzyme 2
  • COVID-19*
  • Humans
  • Molecular Dynamics Simulation*
  • Mutation
  • Protein Binding
  • RNA, Viral
  • SARS-CoV-2 / genetics
  • Spike Glycoprotein, Coronavirus / genetics

Substances

  • spike protein, SARS-CoV-2
  • RNA, Viral
  • Spike Glycoprotein, Coronavirus
  • Angiotensin-Converting Enzyme 2