PGPR-driven phytoremediation and physiobiochemical response of Miscanthus × giganteus to stress induced by the trace elements

Environ Sci Pollut Res Int. 2023 Sep;30(42):96098-96113. doi: 10.1007/s11356-023-29031-5. Epub 2023 Aug 11.

Abstract

The effect of inoculation of Miscanthus × giganteus Greef et Deu by the plant growth promoting rhizobacteria (PGPRs) to the phytoremediation process and physio-biochemical plant's parameters was investigated in soil contaminated with the trace elements (TEs) from the Tekeli mining complex, Kazakhstan. Yeast Trichosporon sp. CA1, strains Rhizobium sp. Zn1-1, Shinella sp. Zn5-6, and Pseudomonas sp. CHA1-4, resistant to Zn and Pb, were isolated from the rhizosphere of M × g when the plant was cultivated in the same contaminated soil. Results illustrated that inoculation improved M × g adaptability to TEs toxicity by increasing the tolerance index to 2.9. The treatment enhanced the aboveground biomass yield by up to 163%, root biomass by up to 240%, chlorophyll content by up to 30%, and Chla/b ratio by up to 21%. Through M × g active growth and development, the peak activity of antioxidant enzymes was observed: activity of superoxide dismutase and glutathione reductase was induced, while the activity of catalase and ascorbate peroxidase was inhibited. Based on bioconcentration and translocation factors it was revealed that PGPRs selectively increased the uptake of TEs or stabilised them in the M × g rhizosphere. Inoculation with PGPRs increased the stabilization of Pb, V, Cr, Co, Ni, Cu, Cd, As, and Ba in the soil and plant tissues. Further research should focus on ex situ experiments using isolated PGPRs.

Keywords: Antioxidative enzymes; Chlorophyll fluorescence; Miscanthus × giganteus; PGPRs; Phytoremediation; Tolerance index.

MeSH terms

  • Biodegradation, Environmental
  • Lead / analysis
  • Metals, Heavy* / analysis
  • Plant Roots / chemistry
  • Plants
  • Poaceae / physiology
  • Soil / chemistry
  • Soil Pollutants* / analysis
  • Trace Elements* / analysis

Substances

  • Trace Elements
  • Lead
  • Soil
  • Soil Pollutants
  • Metals, Heavy