Clinical validation of an elastin-derived trifunctional peptide for skin regeneration

Am J Transl Res. 2023 Jul 15;15(7):4620-4628. eCollection 2023.

Abstract

Aging is associated with progressive skin fragility, characterized in part by extracellular matrix (ECM) fragmentation. This degradation produces matrikines which have an impact on ECM rremodeling. Our group previously designed and characterized a trifunctional peptide (TFP), constituted of i) an elastokine motif (VGVAPG)3, able to increase the expression of matrix constituent through the stimulation of the elastin-binding protein receptor, ii) a tripeptide inhibiting matrix metalloproteinase-1 activity (GIL), and iii) a linker domain acting as a competitive substrate for urokinase (RVRL). TFP was shown to activate the production of matrix constituents while inhibiting Matrix MetalloProtease MMP-1 in vitro on fibroblasts and ex vivo on skin explants.

Objective: In the present study, TFP properties were evaluated in a clinical assay.

Methods: Twenty-two volunteers applied a TFP-based cream on one hemi-face and a placebo-based cream on the other hemi-face, twice a day during 28 days, before undergoing a surgical lifting. Cutometry and skin relief measurements were performed at days 0 and 28, and skin explants from lifting surgery were used for histological analyses.

Results: Cutometry and skin relief measurements reveal TFP firming properties and wrinkle depth decrease in 28 days on TFP- as compared to placebo-treated hemi-faces. These results are confirmed by histological analyses showing an increase of the ratio between basal lamina and stratum corneum. Furthermore, immunostaining of collagen reveals a modification of the ratio between type I and III collagens.

Conclusion: The combined analysis of phenotypic and histologic parameters demonstrates a reorganization of the ECM towards a regenerative profile upon TFP treatment.

Keywords: Elastokines; collagen; cutometry; extracellular matrix; firmness; wrinkle.