RNase E biomolecular condensates stimulate PNPase activity

Sci Rep. 2023 Aug 9;13(1):12937. doi: 10.1038/s41598-023-39565-w.

Abstract

Bacterial Ribonucleoprotein bodies (BR-bodies) play an essential role in organizing RNA degradation via phase separation in the cytoplasm of bacteria. BR-bodies mediate multi-step mRNA decay through the concerted activity of the endoribonuclease RNase E coupled with the 3'-5' exoribonuclease Polynucleotide Phosphorylase (PNPase). In vivo, studies indicated that the loss of PNPase recruitment into BR-bodies led to a significant build-up of RNA decay intermediates in Caulobacter crescentus. However, it remained unclear whether this is due to a lack of colocalized PNPase and RNase E within BR-bodies or whether PNPase's activity is stimulated within the BR-body. We reconstituted RNase E's C-terminal domain with PNPase towards a minimal BR-body in vitro to distinguish these possibilities. We found that PNPase's catalytic activity is accelerated when colocalized within the RNase E biomolecular condensates, partly due to scaffolding and mass action effects. In contrast, disruption of the RNase E-PNPase protein-protein interaction led to a loss of PNPase recruitment into the RNase E condensates and a loss of ribonuclease rate enhancement. We also found that RNase E's unique biomolecular condensate environment tuned PNPase's substrate specificity for poly(A) over poly(U). Intriguingly, a critical PNPase reactant, phosphate, reduces RNase E phase separation both in vitro and in vivo. This regulatory feedback ensures that under limited phosphate resources, PNPase activity is enhanced by recruitment into RNase E's biomolecular condensates.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Biomolecular Condensates*
  • Endoribonucleases / genetics
  • Endoribonucleases / metabolism
  • Escherichia coli* / genetics

Substances

  • ribonuclease E
  • Endoribonucleases