WOX-ARF modules initiate different types of roots

Cell Rep. 2023 Aug 29;42(8):112966. doi: 10.1016/j.celrep.2023.112966. Epub 2023 Aug 8.

Abstract

Seed plants have evolved a complex root system consisting of at least three root types, i.e., adventitious roots, lateral roots, and the primary root. Auxin is the key hormone that controls the initiation of different root types. Here, we show that protein complexes with different combinations of intermediate-clade WUSCHEL-RELATED HOMEOBOXs (IC-WOXs) and class-A AUXIN RESPONSE FACTORs (A-ARFs) initiate the three root types in Arabidopsis thaliana. In adventitious root founder cells from detached leaves, the WOX11-ARF6/8 complex activates RGF1 INSENSITIVEs (RGIs) and LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16) to initiate the adventitious root primordium. In lateral root founder cells, ARF7/19 activate RGIs and LBD16 without IC-WOX to initiate the lateral root primordium. In the primary root founder cell (i.e., hypophysis of an embryo), the WOX9-ARF5 complex initiates the primary root by activation of RGIs. Overall, the WOX-ARF modules show a division of labor to initiate different type of roots.

Keywords: ARF; Arabidopsis thaliana; CP: Plants; WOX; root.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Indoleacetic Acids / metabolism
  • Plant Roots

Substances

  • Arabidopsis Proteins
  • Indoleacetic Acids