Room-Temperature Chemoselective Hydrogenation of Nitroarene Over Atomic Metal-Nonmetal Catalytic Pair

Adv Mater. 2024 Apr;36(17):e2306480. doi: 10.1002/adma.202306480. Epub 2023 Oct 22.

Abstract

Constructing atomic catalytic pair emerges as an attractive strategy to achieve better catalytic performance. Herein, an atomic Ir1─P1/NPG catalyst with asymmetric Ir─N2P1 sites that delivers superb activity and selectivity for hydrogenation of various functionalized nitrostyrene is reported. In the hydrogenation reaction of 3-nitrostyrene, Ir1─P1/NPG (NPG refers to N, P-codoped graphene) shows a turnover frequency of 1197 h-1, while the reaction cannot occur over Ir1/NG (NG refers to N-doped graphene). Compared to Ir1/NG, the charge density of the Ir site in Ir1─P1/NPG is greatly elevated, which is conducive to H2 dissociation. Moreover, as revealed by density functional theory calculations and poisoning experiments, the P site in Ir1─P1/NPG is found able to bind nitrostyrene, while the neighboring Ir site provides H to reduce the nitro group in chemoselective hydrogenation of nitrostyrene. This work offers a successful example of establishing atomic catalytic pair for driving important chemical reactions, paving the way for the development of more advanced catalysts to further improve the catalytic performance.

Keywords: atomically dispersed; catalytic pairs; heterogeneous catalysis; hydrogenation; nitrostyrene.