Quantization of Optic Disc Characteristics in Young Adults Based on Artificial Intelligence

Curr Eye Res. 2023 Nov;48(11):1068-1077. doi: 10.1080/02713683.2023.2244700. Epub 2023 Aug 9.

Abstract

Purpose: This study aimed to automatically and quantitatively analyse the characteristics of the optic disc by applying artificial intelligence (AI) to fundus images.

Methods: A total of 1084 undergraduates were recruited in this cross-sectional study. The optic disc area, cup-to-disc ratio (C/D), optic disc tilt, and the area, width, and height of peripapillary atrophy (PPA) were automatically and quantitatively detected using AI. Based on axial length (AL), participants were divided into five groups: Group 1 (AL ≤ 23 mm); Group 2 (23 mm < AL≤ 24 mm); Group 3 (24 mm < AL≤ 25 mm); Group 4 (25 mm < AL< 26 mm) and Group 5 (AL ≥ 26 mm). Relationships between ocular parameters and optic disc characteristics were analysed.

Result: A total of 999 undergraduates were included in the analysis. The prevalence of optic disc tilting and PPA were 47.1% and 92.5%, respectively, and increased with the severity of myopia. The mean optic disc area, PPA area, C/D, and optic disc tilt ratio were 1.97 ± 0.46 mm2, 0.84 ± 0.59 mm2, 0.18 ± 0.07, and 0.81 ± 0.08, respectively. In Group 5, the average optic disc area (1.84 ± 0.41 mm2) and optic disc tilt ratio (0.79 ± 0.08) were significantly smaller and the PPA area (1.12 ± 0.61 mm2) was significantly larger than those in the other groups. AL was negatively correlated with optic disc area and optic disc tilt ratio (r=-0.271, -0.219; both p < 0.001) and positively correlated with PPA area, width, and height (r = 0.421, 0.426, 0.345; all p < 0.01). A greater AL (β = 0.284, p < 0.01) and a smaller optic disc tilt ratio (β=-0.516, p < 0.01) were related to a larger PPA area.

Conclusion: The characteristics of the optic disc can be feasibly and efficiently extracted using AI. The quantization of the optic disc might provide new indicators for clinicians to evaluate the degree of myopia.

Keywords: Artificial intelligence; optic disc area; optic disc tilt; peripapillary atrophy.