Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction

Dalton Trans. 2023 Aug 22;52(33):11378-11389. doi: 10.1039/d3dt01562a.

Abstract

Metallenes exhibit great potential for catalytic reaction, particularly for the hydrogen evolution reaction (HER) and biomass oxidation reaction, due to their favorable electronic configurations, ultrahigh specific surface areas, and highly accessible surface atoms. Therefore, metallenes can function as bifunctional electrocatalysts to boost the energy-saving biomass-oxidation-assisted HER, and have attracted great interest. Given the growing importance of green hydrogen as an alternative energy source in recent years, it is timely and imperative to summarize the recent progress and current status of metallene-based catalysts for the biomass-oxidation-assisted HER. Here, we review the recent advances in metallenes in terms of composition and structural regulations including alloying, nonmetal doping, defect engineering, surface functionalization, and heterostructure engineering strategies and their applications in driving electrocatalytic HER, with special focus on biomass-oxidation-assisted hydrogen production. The underlying structure-activity relationship and mechanisms are also comprehensively discussed. Finally, we also propose the challenges and future directions of metallene-based catalysts for the applications in biomass-oxidation-assisted HER.

Publication types

  • Review