Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification

Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202307995. doi: 10.1002/anie.202307995. Epub 2023 Aug 15.

Abstract

Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine β-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.

Keywords: Biosynthesis; Monoterpene Indole Alkaloids; Natural Products; Pathway Discovery; Plant Enzymes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents* / metabolism
  • Biological Products* / metabolism
  • Mitragyna* / metabolism
  • Plants / metabolism
  • Saccharomyces cerevisiae / metabolism
  • Secologanin Tryptamine Alkaloids*

Substances

  • mitragynine
  • Secologanin Tryptamine Alkaloids
  • Antineoplastic Agents
  • Biological Products