A Pacing-Controlled Procedure for the Assessment of Heart Rate-Dependent Diastolic Functions in Murine Heart Failure Models

J Vis Exp. 2023 Jul 21:(197). doi: 10.3791/65384.

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a condition characterized by diastolic dysfunction and exercise intolerance. While exercise-stressed hemodynamic tests or MRI can be used to detect diastolic dysfunction and diagnose HFpEF in humans, such modalities are limited in basic research using mouse models. A treadmill exercise test is commonly used for this purpose in mice, but its results can be influenced by body weight, skeletal muscle strength, and mental state. Here, we describe an atrial-pacing protocol to detect heart rate (HR)-dependent changes in diastolic performance and validate its usefulness in a mouse model of HFpEF. The method involves anesthetizing, intubating, and performing pressure-volume (PV) loop analysis concomitant with atrial pacing. In this work, a conductance catheter was inserted via a left ventricular apical approach, and an atrial pacing catheter was placed in the esophagus. Baseline PV loops were collected before the HR was slowed with ivabradine. PV loops were collected and analyzed at HR increments ranging from 400 bpm to 700 bpm via atrial pacing. Using this protocol, we clearly demonstrated HR-dependent diastolic impairment in a metabolically induced HFpEF model. Both the relaxation time constant (Tau) and the end-diastolic pressure-volume relationship (EDPVR) worsened as the HR increased compared to control mice. In conclusion, this atrial pacing-controlled protocol is useful for detecting HR-dependent cardiac dysfunctions. It provides a new way to study the underlying mechanisms of diastolic dysfunction in HFpEF mouse models and may help develop new treatments for this condition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Atrial Fibrillation*
  • Cardiomyopathies*
  • Diastole / physiology
  • Heart Failure*
  • Heart Rate
  • Mice
  • Stroke Volume / physiology
  • Ventricular Function, Left / physiology