Physical modification of vegetable protein by extrusion and regulation mechanism of polysaccharide on the unique functional properties of extruded vegetable protein: a review

Crit Rev Food Sci Nutr. 2023 Aug 7:1-14. doi: 10.1080/10408398.2023.2239337. Online ahead of print.

Abstract

Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.

Keywords: Extrusion technology; polysaccharide; regulation mechanism; unique functional properties; vegetable protein.

Publication types

  • Review