Transvalvular Unloading Mitigates Ventricular Injury Due to Venoarterial Extracorporeal Membrane Oxygenation in Acute Myocardial Infarction

JACC Basic Transl Sci. 2023 May 10;8(7):769-780. doi: 10.1016/j.jacbts.2023.01.004. eCollection 2023 Jul.

Abstract

Whether extracorporeal membrane oxygenation (ECMO) with Impella, known as EC-Pella, limits cardiac damage in acute myocardial infarction remains unknown. The authors now report that the combination of transvalvular unloading and ECMO (EC-Pella) initiated before reperfusion reduced infarct size compared with ECMO alone before reperfusion in a preclinical model of acute myocardial infarction. EC-Pella also reduced left ventricular pressure-volume area when transvalvular unloading was applied before, not after, activation of ECMO. The authors further observed that EC-Pella increased cardioprotective signaling but failed to rescue mitochondrial dysfunction compared with ECMO alone. These findings suggest that ECMO can increase infarct size in acute myocardial infarction and that EC-Pella can mitigate this effect but also suggest that left ventricular unloading and myocardial salvage may be uncoupled in the presence of ECMO in acute myocardial infarction. These observations implicate mechanisms beyond hemodynamic load as part of the injury cascade associated with ECMO in acute myocardial infarction.

Keywords: cardioprotection; hemodynamic status; mechanical circulatory support; unloading.