Genetic context drives age-related disparities in synaptic maintenance and structure across cortical and hippocampal neuronal circuits

bioRxiv [Preprint]. 2023 Aug 1:2023.07.27.550869. doi: 10.1101/2023.07.27.550869.

Abstract

The disconnection of neuronal circuits through synaptic loss is presumed to be a major driver of age-related cognitive decline. Age-related cognitive decline is heterogeneous, yet whether genetic mechanisms differentiate successful from unsuccessful cognitive decline through synaptic structural mechanisms remains unknown. Previous work using rodent and primate models leveraged various techniques to suggest that age-related synaptic loss is widespread on pyramidal cells in prefrontal cortex (PFC) circuits but absent on those in area CA1 of the hippocampus. Here, we examined the effect of aging on synapses on projection neurons forming a hippocampal-cortico-thalamic circuit important for spatial working memory tasks from two genetically distinct mouse strains that exhibit susceptibility (C57BL/6J) or resistance (PWK/PhJ) to cognitive decline during aging. Across both strains, synapses on the CA1-to-PFC projection neurons appeared completely intact with age. In contrast, we found synapse loss on PFC-to-nucleus reuniens (RE) projection neurons from aged C57BL/6J but not PWK/PhJ mice. Moreover, synapses from aged PWK/PhJ mice but not from C57BL/6J exhibited morphological changes that suggest increased synaptic efficiency to depolarize the parent dendrite. Our findings suggest resistance to age-related cognitive decline results in part by age-related synaptic adaptations, and identification of these mechanisms in PWK/PhJ mice could uncover new therapeutic targets for promoting successful cognitive aging and extending human health span.

Keywords: Aging; dendritic spines; frontal cortex; genetic diversity; neuronal circuits.

Publication types

  • Preprint