Biocompatibility and inflammatory response of silver tungstate, silver molybdate, and silver vanadate microcrystals

Front Bioeng Biotechnol. 2023 Jul 20:11:1215438. doi: 10.3389/fbioe.2023.1215438. eCollection 2023.

Abstract

Silver tungstate (α-Ag2WO4), silver molybdate (β-Ag2MoO4), and silver vanadate (α-AgVO3) microcrystals have shown interesting antimicrobial properties. However, their biocompatibility is not yet fully understood. Cytotoxicity and the inflammatory response of silver-containing microcrystals were analyzed in THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™ assay, flow cytometry, confocal microscopy, and ELISA. The present investigation also evaluated redox signaling and the production of cytokines (TNFα, IL-1β, IL-6, and IL-8) and matrix metalloproteinases (MMP-8 and -9). The results showed that α-AgVO3 (3.9 μg/mL) did not affect cell viability (p > 0.05). α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and α-AgVO3 (15.62 μg/mL) slightly decreased cell viability (p ≤ 0.003). All silver-containing microcrystals induced the production of O2 - and this effect was mitigated by Reactive Oxygen Species (ROS) scavenger and N-acetylcysteine (NAC). TNFα, IL-6 and IL-1β were not detected in THP-1 cells, while their production was either lower (p ≤ 0.0321) or similar to the control group (p ≥ 0.1048) for macrophage-like cells. The production of IL-8 by both cellular phenotypes was similar to the control group (p ≥ 0.3570). The release of MMP-8 was not detected in any condition in THP-1 cells. Although MMP-9 was released by THP-1 cells exposed to α-AgVO3 (3.9 μg/mL), no significant difference was found with control (p = 0.7). Regarding macrophage-like cells, the release of MMP-8 and -9 decreased in the presence of all microcrystals (p ≤ 0.010). Overall, the present work shows a promising biocompatibility profile of, α-Ag2WO4, β-Ag2MoO4, and α-AgVO3 microcrystals.

Keywords: cytokines; macrophages; matrix metalloproteinases, reactive oxygen species; monocytes; silver-based metal oxides.

Grants and funding

This study was supported by the São Paulo Research Foundation (FAPESP) [grant number 2013/07296-2 (CDMF)]. BP would also like to thank the financial support by FAPESP [grant number 2018/01677-8]. SA would also like to thank the financial support by FAPESP [grant number 2022/08487-5]. MA was supported by the Margarita Salas postdoctoral contract MGS/2021/21 (UP 2021-021) financed by the European Union-Next Generation.