Accelerating Ethanol Complete Electrooxidation via Introducing Ethylene as the Precursor for the C-C Bond Splitting

Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202308057. doi: 10.1002/anie.202308057. Epub 2023 Aug 16.

Abstract

The crucial issue restricting the application of direct ethanol fuel cells (DEFCs) is the incomplete and sluggish electrooxidation of ethanol due to the chemically stable C-C bond thereof. Herein, a unique ethylene-mediated pathway with a 100 % C1-selectivity for ethanol oxidation reaction (EOR) is proposed for the first time based on a well-structured Pt/Al2 O3 @TiAl catalyst with cascade active sites. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) and differential electrochemical mass spectrometry (DEMS) analysis disclose that ethanol is primarily dehydrated on the surface of Al2 O3 @TiAl and the derived ethylene is further oxidized completely on nanostructured Pt. X-ray absorption and density functional theory (DFT) studies disclose the Al component doped in Pt nanocrystals can promote the EOR kinetics by lowering the reaction energy barriers and eliminating the poisonous species. Strikingly, Pt/Al2 O3 @TiAl exhibits a specific activity of 3.83 mA cm-2 Pt , 7.4 times higher than that of commercial Pt/C and superior long-term durability.

Keywords: 3D Printing; Dehydration; Ethanol Electrooxidation; Functional Support; Pt Nanoflowers.