Electrochemical Enhancement of Lithium-Ion Diffusion in Polypyrrole-Modified Sulfurized Polyacrylonitrile Nanotubes for Solid-to-Solid Free-Standing Lithium-Sulfur Cathodes

Small. 2023 Nov;19(48):e2303781. doi: 10.1002/smll.202303781. Epub 2023 Aug 6.

Abstract

The energy density of lithium-sulfurized polyacrylonitrile (Li-SPAN) batteries has chronically suffered from low sulfur content. Although a free-standing electrode can significantly reduce noncapacity mass contribution, the slow bulk reaction kinetics still constrain the electrochemical performance. In this regard, a novel electrochemically active additive, polypyrrole (PPy), is introduced to construct PAN nanotubes as a sulfur carrier. This hollow channel greatly facilitates charge transport within the electrode and increases the sulfur content. Both electrochemical tests and simulations show that the SPANPPy-1% cathode possesses a larger lithium-ion diffusion coefficient and a more homogeneous phase interface than the SPAN cathode. Consequently, significantly improved capabilities and rate properties are achieved, as well as decent exportations under high-sulfur-loading or lean-electrolyte conditions. In-situ and semi-situ characterizations are further performed to demonstrate the nucleation growth of lithium sulfide and the evolution of the electrode surface structure. This type of electrochemically active additive provides a well-supported implementation of high-energy-density Li-S batteries.

Keywords: charge transport; electrochemically active additives; free-standing electrodes; hollow channels.