Deciphering Vacancy Defect Evolution of 2D MoS2 for Reliable Transistors

ACS Appl Mater Interfaces. 2023 Aug 16;15(32):38603-38611. doi: 10.1021/acsami.3c07806. Epub 2023 Aug 5.

Abstract

Two-dimensional (2D) MoS2 is an excellent candidate channel material for next-generation integrated circuit (IC) transistors. However, the reliability of MoS2 is of great concern due to the serious threat of vacancy defects, such as sulfur vacancies (VS). Evaluating the impact of vacancy defects on the service reliability of MoS2 transistors is crucial, but it has always been limited by the difficulty in systematically tracking and analyzing the changes and effects of vacancy defects in the service environment. Here, a simulated initiator is established for deciphering the evolution of vacancy defects in MoS2 and their influence on the reliability of transistors. The results indicate that VS below 1.3% are isolated by slow enrichment during initiation. Over 1.3% of VS tend to enrich in pairs and over 3.5% of the enriched VS easily evolve into nanopores. The enriched VS with electron doping in the channel cause the threshold voltage (Vth) negative drift approaching 6 V, while the expanded nanopores initiate the Vth roll-off and punch-through of transistors. Finally, sulfur steam deposition has been proposed to constrain VS enrichment, and reliable MoS2 transistors are constructed. Our research provides a new method for deciphering and identifying the impact of defects.

Keywords: MoS2 monolayer; defect evolution; field-effect transistors; reliability; vacancy defects.