Binding of viral nuclear localization signal peptides to importin-α nuclear transport protein

Biophys J. 2023 Sep 5;122(17):3476-3488. doi: 10.1016/j.bpj.2023.07.024. Epub 2023 Aug 4.

Abstract

Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and nonspecifically by adopting five diverse conformational clusters with low similarity to the x-ray structure 3VE6 of NLS-impα complex. Despite the prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively, adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analyses indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Active Transport, Cell Nucleus
  • Amino Acids / metabolism
  • Binding Sites
  • Cell Nucleus / metabolism
  • Humans
  • Karyopherins / metabolism
  • Nuclear Localization Signals* / metabolism
  • Nuclear Proteins* / metabolism
  • Protein Binding
  • alpha Karyopherins / metabolism

Substances

  • Nuclear Localization Signals
  • Nuclear Proteins
  • Karyopherins
  • alpha Karyopherins
  • Amino Acids