Environmental hormesis in living systems: The role of hormetic trade-offs

Sci Total Environ. 2023 Nov 25:901:166022. doi: 10.1016/j.scitotenv.2023.166022. Epub 2023 Aug 2.

Abstract

Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).

Keywords: Adaptation; Environmental factors; Evolution; Fitness; Preconditioning; Stress.