O-GlcNAcylation of Raptor transduces glucose signals to mTORC1

Mol Cell. 2023 Aug 17;83(16):3027-3040.e11. doi: 10.1016/j.molcel.2023.07.011. Epub 2023 Aug 3.

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient levels. Dysregulation of mTORC1 results in a broad spectrum of diseases. Glucose is the primary energy supply of cells, and therefore, glucose levels must be accurately conveyed to mTORC1 through highly responsive signaling mechanisms to control mTORC1 activity. Here, we report that glucose-induced mTORC1 activation is regulated by O-GlcNAcylation of Raptor, a core component of mTORC1, in HEK293T cells. Mechanistically, O-GlcNAcylation of Raptor at threonine 700 facilitates the interactions between Raptor and Rag GTPases and promotes the translocation of mTOR to the lysosomal surface, consequently activating mTORC1. In addition, we show that AMPK-mediated phosphorylation of Raptor suppresses Raptor O-GlcNAcylation and inhibits Raptor-Rags interactions. Our findings reveal an exquisitely controlled mechanism, which suggests how glucose coordinately regulates cellular anabolism and catabolism.

Keywords: O-GlcNAcylation; Raptor; glucose sensing; mTOR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing* / genetics
  • Adaptor Proteins, Signal Transducing* / metabolism
  • HEK293 Cells
  • Humans
  • Mechanistic Target of Rapamycin Complex 1 / genetics
  • Mechanistic Target of Rapamycin Complex 1 / metabolism
  • Multiprotein Complexes* / metabolism
  • Phosphorylation
  • Regulatory-Associated Protein of mTOR / genetics
  • Regulatory-Associated Protein of mTOR / metabolism

Substances

  • Mechanistic Target of Rapamycin Complex 1
  • Adaptor Proteins, Signal Transducing
  • Multiprotein Complexes
  • Regulatory-Associated Protein of mTOR