Unsteady Ohmic dissipative flow of ZnO-SAE50 nanofluid past a permeable shrinking cylinder

Nanotechnology. 2023 Aug 21;34(45). doi: 10.1088/1361-6528/aced57.

Abstract

The laminar boundary layer flow of a Zinc Oxide-Society of Automotive Engineers 50 alias nano-lubricant (ZnO-SAE50) past a permeable shrinking cylinder is investigated. The flow is unsteady, incompressible, and Ohmic dissipative. The present study holds immense significance in different engineering as well as scientific domains. It combines research on nanoparticle effects, unsteady flows, and solid surface interactions. The study claimed that the use ofZnO-SAE50nanofluid in the unsteady flow past a permeable shrinking cylinder led to significant heat transfer enhancement. The acquired results from the study would be fruitful in the fields of thermal engineering and heat transfer. The findings of the study can aid in optimizing cooling systems, heat exchangers, and energy-efficient designs. A governing model has been achieved for the flow and heat transfer by using conservation laws related to mass, momentum, and energy. Governing system of partial differential equations is solved to a nonlinear system of ordinary differential equations by using similarity transformation, which is later on solved with the help of the Shooting method and RK-Fehlberg duos. Plots are shown for both velocity and temperature profiles, to display the impacts of involved dimensionless parameters. Additionally, graphs for Nusselt Number have also been represented which shows the local rate of heat transfer. It is examined that the Ohmic dissipation as well as the volumetric ratio of the nanoparticles greatly influence the overall thermal performance of the system.

Keywords: Ohmic dissipation; ZnO-SAE50 nano-lubricant; laminar boundary layer; shrinking cylinder; unsteady flow.