A simplified mid-infrared anti-resonant chalcogenide fiber with fewest resonant peaks

Nanotechnology. 2023 Aug 21;34(45). doi: 10.1088/1361-6528/aced56.

Abstract

High-power laser delivery in the mid-infrared via hollow-core fibers is attractive, but it is too difficult to be fabricated using chalcogenide glasses. Here, we designed a mid-infrared hollow-core anti-resonant chalcogenide fiber (HC-ARCF) with a simplified Kagome cladding micro-structure for the first time. Then, the fiber was firstly fabricated through a precision mechanical drilling and pressured fiber drawing method. Ultra-thin walls of 2μm in the fiber lead to the fewest resonance peaks in the 2-5μm among all reported HC-ARCFs. All the fundamental mode, the second-order mode, tube mode and node mode in the fiber were excited and observed at 1550 nm. The power and spectral properties of the core and cladding of HC-ARCF are studied for the first time. The fiber can deliver high-power of 4.84 W without damage with core-coupling, while the threshold of the node in the cladding is only 3.5 W. A broadening of the output spectrum from 1.96 to 2.41μm due to the high nonlinearity at the node was successfully observed under short-pulse laser pumping at 2μm. The potentials of the fiber used for mid-infrared high-power laser delivery via core, or nonlinear laser generation via node, were thus demonstrated.

Keywords: high-power laser; hollow-core anti-resonant chalcogenide fiber; nonlinear laser generation; resonance peaks.