A comparison of hydrophilic interaction liquid chromatography and capillary electrophoresis for the metabolomics analysis of human serum

J Chromatogr A. 2023 Sep 13:1706:464239. doi: 10.1016/j.chroma.2023.464239. Epub 2023 Jul 22.

Abstract

Cationic, anionic, zwitterionic and, partially polar metabolites are very important constituents of blood serum. Several of these metabolites underpin the core metabolism of cells (e.g., Krebs cycle, urea cycle, proteins synthesis, etc.), while others might be considered ancillary but still important to grasp the status of any organism through blood serum analysis. Due to its wide chemical diversity, modern metabolomics analysis of serum is still struggling to provide a complete and comprehensive picture of the polar metabolome, due to the limitations of each specific analytical method. In this study, two metabolomics-based analytical methods using the most successful techniques for polar compounds separation in human serum samples, namely hydrophilic interaction liquid chromatography (HILIC) and capillary electrophoresis (CE), are evaluated, both coupled to a high-resolution time-of-flight mass spectrometer via electrospray ionization (ESI-Q-TOF-MS). The performance of the two methods have been compared using five terms of comparison, three of which are specific to metabolomics, such as (1) compounds' detectability (2) Pezzatti score (Pezzatti et al. 2018), (3) intra-day precision (repeatability), (4) ease of automatic analysis of the data (through a common deconvolution alignment and extrapolation software, MS-DIAL, and (5) time & cost analysis. From this study, HILIC-MS proved to be a better tool for polar metabolome analysis, while CE-MS helped identify some interesting variables that gave it interest in completing metabolome coverage in metabolomics studies. Finally, in this framework, MS-DIAL demonstrates for the first time its ability to process CE data for metabolomics, although it is not designed for it.

Keywords: CE-MS; HILIC-MS; MS-DIAL; Migration time correction; Polar metabolomics analysis.

Publication types

  • Comparative Study

MeSH terms

  • Chromatography, Liquid / methods
  • Electrophoresis, Capillary / methods
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Metabolome
  • Metabolomics* / methods
  • Serum*