Manipulating Quantum Interference between σ and π Orbitals in Single-Molecule Junctions via Chemical Substitution and Environmental Control

ACS Nano. 2023 Aug 22;17(16):16107-16114. doi: 10.1021/acsnano.3c04963. Epub 2023 Aug 4.

Abstract

Understanding and manipulating quantum interference (QI) effects in single molecule junction conductance can enable the design of molecular-scale devices. Here we demonstrate QI between σ and π molecular orbitals in an ∼4 Å molecule, pyrazine, bridging source and drain electrodes. Using single molecule conductance measurements, first-principles analysis, and electronic transport calculations, we show that this phenomenon leads to distinct patterns of electron transport in nanoscale junctions, such as destructive interference through the para position of a six-membered ring. These QI effects can be tuned to allow conductance switching using environmental pH control. Our work lays out a conceptual framework for engineering QI features in short molecular systems through synthetic and external manipulation that tunes the energies and symmetries of the σ and π channels.

Keywords: electron transport; electronic structure; molecular switches; nanoscale contacts; quantum interference; single-molecule conductance.