Spatio-temporal comprehensive measurement of China's agricultural green development level and associated influencing factors

PLoS One. 2023 Aug 4;18(8):e0288599. doi: 10.1371/journal.pone.0288599. eCollection 2023.

Abstract

Green development is an inevitable trend in the modernization of agriculture and rural areas, and promoting the green development of agriculture has always been an important measure for China's sustainable growth. However, due to the influence of diverse regional environments and the wide range of landscapes in China, a largely agricultural country, China is facing ongoing challenges in improving the overall level of agricultural green development and narrowing regional differences, which has recently garnered worldwide attention. This study aims to measure and analyze the agricultural green development level of 30 provinces in China (Tibet, Hong Kong, Macao, and Taiwan are not included in the target areas of this research due to a lack of data). Here, we applied GIS technology, an entropy-TOPSIS (technique for order of preference by similarity to ideal solution) model, quantitative analysis methods such as global spatial autocorrelation analysis, coldspot and hotspot analysis, and a spatial Durbin model to construct measurement models and index systems, after which we performed a comprehensive spatiotemporal analysis of China's agricultural green development level. Furthermore, the present study also analyzed the factors that influence agricultural green development in China. The present study demonstrated that: (i) between 2005 and 2020, China's overall level of agricultural green development exhibited a fluctuating upward trend, with significant improvement and enhancement in most provinces. However, the overall level of China's agricultural green development remains low, and differences at the provincial level are particularly prominent, with the main regions displaying the following descending development pattern: Eastern > Central > Western regions. (ii) The level of China's agricultural green development shows clear signs of spatial aggregation, characterized by spatial dependence and heterogeneity. Although this phenomenon is gradually weakening over time, the high levels of agricultural green development in the eastern regions and low levels in the western regions are likely to persist in the near future. (iii) Green agricultural structure, technology supply, agricultural mechanization level, and arable land area are the key factors influencing China's level of agricultural green development. Among these factors, technology supply, agricultural mechanization level, and arable land area have the largest direct impact, whereas green agricultural structure has a positive spatial spillover effect on the level of agricultural green development. Technology supply has both a positive direct impact and a negative indirect impact on the level of agricultural green development. Therefore, further improving technology supply and agricultural mechanization level can directly promote China's agricultural green development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • China
  • Economic Development
  • Industry*
  • Sustainable Development*
  • Technology

Grants and funding

This study was funded by the National Natural Science Foundation of China (grant numbers 42061054 and 41561110) awarded to LC.