Solution-Processed Hydrogen-Bonded Organic Framework Nanofilms for High-Performance Resistive Memory Devices

Adv Mater. 2023 Nov;35(47):e2305344. doi: 10.1002/adma.202305344. Epub 2023 Oct 17.

Abstract

The integration of hydrogen-bonded organic frameworks (HOFs) into electronic devices holds great promise due to their high crystallinity, intrinsic porosity, and easy regeneration. However, despite their potential, the utilization of HOFs in electronic devices remains largely unexplored, primarily due to the challenges associated with fabricating high-quality films. Herein, a controlled synthesis of HOF nanofilms with smooth surface, good crystallinity, and high orientation is achieved using a solution-processed approach. The memristors exhibit outstanding bipolar switching performance with a low set voltage of 0.86 V, excellent retention of 1.64 × 104 s, and operational endurance of 60 cycles. Additionally, these robust memristors display remarkable thermal stability, maintaining their performance even at elevated temperatures of up to 200 °C. More strikingly, scratched HOF films can be readily regenerated through a simple solvent rinsing process, enabling their reuse for the fabrication of new memristors, which is difficult to achieve with traditional resistive switching materials. Additionally, a switching mechanism based on the reversible formation and annihilation of conductive filaments is revealed. This work provides novel and invaluable insights that have a significant impact on advancing the widespread adoption of HOFs as active layers in electronic devices.

Keywords: hydrogen-bonded organic frameworks; nanofilms; resistance-switching memristors; solution processability.