Completion of mitochondrial division requires the intermembrane space protein Mdi1/Atg44

J Cell Biol. 2023 Oct 2;222(10):e202303147. doi: 10.1083/jcb.202303147. Epub 2023 Aug 4.

Abstract

Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by a dynamin-related protein, Dnm1 (Drp1 in humans), that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity is sufficient to complete the fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1 (also named Atg44). Loss of Mdi1 causes mitochondrial hyperfusion due to defects in fission, but not the lack of Dnm1 recruitment to mitochondria. Mdi1 is conserved in fungal species, and its homologs contain an amphipathic α-helix, mutations of which disrupt mitochondrial morphology. One model is that Mdi1 distorts mitochondrial membranes to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of Mdi1 inside mitochondria.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Dynamins / genetics
  • Dynamins / metabolism
  • GTP Phosphohydrolases / genetics
  • GTP Phosphohydrolases / metabolism
  • Mitochondria / genetics
  • Mitochondria / metabolism
  • Mitochondrial Dynamics*
  • Mitochondrial Membranes / metabolism
  • Mitochondrial Proteins* / genetics
  • Mitochondrial Proteins* / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Dynamins
  • Mitochondrial Proteins
  • DNM1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • GTP Phosphohydrolases