Randomizing spectral cues used to resolve front-back reversals in sound-source localization

J Acoust Soc Am. 2023 Aug 1;154(2):661-670. doi: 10.1121/10.0020563.

Abstract

Front-back reversals (FBRs) in sound-source localization tasks due to cone-of-confusion errors on the azimuth plane occur with some regularity, and their occurrence is listener-dependent. There are fewer FBRs for wideband, high-frequency sounds than for low-frequency sounds presumably because the sources of low-frequency sounds are localized on the basis of interaural differences (interaural time and level differences), which can lead to ambiguous responses. Spectral cues can aid in determining sound-source locations for wideband, high-frequency sounds, and such spectral cues do not lead to ambiguous responses. However, to what extent spectral features might aid sound-source localization is still not known. This paper explores conditions in which the spectral profile of two-octave wide noise bands, whose sources were localized on the azimuth plane, were randomly varied. The experiment demonstrated that such spectral profile randomization increased FBRs for high-frequency noise bands, presumably because whatever spectral features are used for sound-source localization were no longer as useful for resolving FBRs, and listeners relied on interaural differences for sound-source localization, which led to response ambiguities. Additionally, head rotation decreased FBRs in all cases, even when FBRs increased due to spectral profile randomization. In all cases, the occurrence of FBRs was listener-dependent.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation
  • Cues*
  • Humans
  • Noise / adverse effects
  • Sound
  • Sound Localization* / physiology