Mismatch negativity generation in subjects at risk for psychosis: source analysis is more sensitive than surface electrodes in risk prediction

Front Psychiatry. 2023 Jul 19:14:1130809. doi: 10.3389/fpsyt.2023.1130809. eCollection 2023.

Abstract

Background: Deficits of mismatch negativity (MMN) in patients with schizophrenia have been demonstrated many times and there is growing evidence that alterations of MMN already exist in individuals at risk for psychosis. The present study examines differences in MMN between subjects fulfilling ultra-high risk (UHR) or only basic symptoms criteria and it addresses the question, if MMN source analysis can improve prediction of transition to psychosis.

Methods: The MMN to duration, frequency, and intensity deviants was recorded in 50 healthy controls and 161 individuals at risk for psychosis classified into three subgroups: only basic symptoms (n = 74), only ultra-high risk (n = 13) and persons who fulfill both risk criteria (n = 74). Based on a three-source model of MMN generation, we conducted an MMN source analysis and compared the amplitudes of surface electrodes and sources among the three groups.

Results: Significant differences in MMN generation among the four groups were revealed at surface electrodes Cz and C4 (p < 0.05) and at the frontal source (p < 0.001) for duration deviant stimuli. The 15 subjects from the risk groups who subsequently developed a manifest psychosis had a significantly lower MMN amplitude at frontal source (p = 0.019) without showing significant differences at surface electrodes. Low activity at frontal MMN source increased the risk of transition to manifest disease by the factor 3.12 in UHR subjects.

Conclusion: MMN activity differed significantly between subjects presenting only basic symptoms and subjects which additionally meet UHR criteria. The largest differences between groups as well as between individuals with and without transition were observed at the frontal source. The present results suggest that source analysis is more sensitive than surface electrodes in psychosis risk prediction by MMN.

Keywords: EEG; at risk for psychosis; mismatch negativity; risk prediction; source analysis.