White and green striate leaves 1, predicted to encode a 16S rRNA processing protein, plays a critical role in the processing of chloroplast ribosomes in maize (Zea mays L.)

Mol Breed. 2023 Aug 1;43(8):65. doi: 10.1007/s11032-023-01407-y. eCollection 2023 Aug.

Abstract

Ribosomes play a crucial role in protein biosynthesis and are linked to plant growth and development. The RimM protein has been shown to be involved in the maturation of 30S ribosomal subunits, but its exact function in plants is still unknown. In this study, we discovered a maize mutant with white and green striate leaves (wgsl1) and reduced chlorophyll content. Genetic analysis showed that the wgsl1 mutation was recessive and controlled by a single nuclear gene. Map-based cloning of ZmWGSL1 identified a base substitution (G to A) that generated a missense mutation within the Zm00001d039036 gene in the wgsl1 mutant. Zm00001d039036 encodes a 16S rRNA processing protein containing the RimM motif. Further analysis of transcriptomic data showed that the transcript levels of many ribosomal proteins involved in the small and big ribosomal subunits were dramatically up-regulated in the wgsl1 mutant. Moreover, the level of ribosomal multimers was decreased. This suggests that ZmWGSL1 plays a crucial role in the maturation of the ribosome, leading to abnormal plant growth and development. In addition, subcellular localization results indicate that WGSL1 is localized in chloroplasts. Therefore, we suggest that WGSL1 is a nuclear-encoded protein, is transported to the chloroplast to drive functions, and affects the processing of ribosomes in the chloroplast.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01407-y.

Keywords: 16S rRNA; Maize; Ribosomes; RimM protein.