Co-exposure of avermectin and imidacloprid induces DNA damage, pyroptosis, and immune dysfunction in epithelioma papulosum cyprini cells via ROS-mediated Keap1/Nrf2/TXNIP axis

Fish Shellfish Immunol. 2023 Sep:140:108985. doi: 10.1016/j.fsi.2023.108985. Epub 2023 Aug 2.

Abstract

Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.

Keywords: DNA damage; Immunosuppression; Mixture exposure; Oxidative stress; Pyroptosis.

MeSH terms

  • Animals
  • Carcinoma*
  • DNA Damage
  • Kelch-Like ECH-Associated Protein 1 / genetics
  • Kelch-Like ECH-Associated Protein 1 / metabolism
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress
  • Pesticides* / toxicity
  • Pyroptosis
  • Reactive Oxygen Species / metabolism

Substances

  • imidacloprid
  • avermectin
  • Reactive Oxygen Species
  • NF-E2-Related Factor 2
  • Kelch-Like ECH-Associated Protein 1
  • Pesticides