Magnetic Real Chern Insulator in 2D Metal-Organic Frameworks

Nano Lett. 2023 Aug 23;23(16):7358-7363. doi: 10.1021/acs.nanolett.3c01723. Epub 2023 Aug 3.

Abstract

Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.

Keywords: corner states; flat band; real Chen insulator; spin polarization.