Density Functional Theory Study of the Structure of the Pillared Hofmann compound Ni(3-Methy-4,4'-bipyridine)[Ni(CN)4] (Ni-BpyMe or PICNIC-21)

J Phys Chem C Nanomater Interfaces. 2021;125(29):10.1021/acs.jpcc.1c01896. doi: 10.1021/acs.jpcc.1c01896.

Abstract

We use dispersion-corrected density functional theory (DFT) to investigate the structure of the pillared Hofmann compound Ni(3-Methy-4,4'-bipyridine)[Ni(CN)4] (Ni-BpyMe for short, or PICNIC-21). We model the disorder found in experimental X-ray structure refinement via an ensemble of supercells with ordered ligand orientation configurations. The ensemble-averaged structure agrees very well with experiment, except for the positions of the methyl group hydrogen atoms. While the dihedral angles between the bipyridal rings of each BpyMe ligand of the averaged structure is 90°, the local dihedral angles are about 80°. DFT screening of configurations where the crystallographic a/b ratio is constrained to equal 1 fail to find the configurations that are most stable when a/b is set to its distorted experimental value of a/b = 0.86, demonstrating the difficulty of solving pillared Hofmann structures purely theoretically without experimental input. The waviness of the Ni(CN)2 sheets is explained as a tendency to maximize dispersion interactions between these sheets and the methyl pyridine rings. This waviness leads to greater residual pore space and greater adsorbate uptake at low pressure compared with the analogous pillared compound Ni-Bpene (PICNIC-60).