Long-Read Genome Sequencing of Abscondita cerata (Coleoptera: Lampyridae), the Endemic Firefly of Taiwan

Zool Stud. 2023 May 26:62:e25. doi: 10.6620/ZS.2023.62-25. eCollection 2023.

Abstract

Abscondita cerata is the most abundant and widely distributed endemic firefly species in Taiwan and is considered a key environmental and ecological indicator organism. In this study, we report the first long-read genome sequencing of Abs. cerata sequenced by Nanopore technology. The draft genome size, 967 Mb, was measured through a hybrid approach that consisted of assembling using 11.25-Gb Nanopore long reads and polishing using 9.47-Gb BGI PE100 short reads. The drafted genome was assembled into 4,855 contigs, with the N50 reaching 325.269 kb length. The assembled genome was predicted to possess 55,206 protein-coding genes, of which 20,862 (37.78%) were functionally annotated with public databases. 47.11% of the genome sequences consisted of repeat elements; among them DNA transposons accounted for the largest proportion (26.79%). A BUSCO (Benchmarking Universal Single Copy Orthologs) evaluation demonstrated that the genome and gene completeness were 84.8% and 79%, respectively. The phylogeny constructed using 1,792 single copy genes was consistent with previous studies. The comparative transcriptome between adult male head and lantern tissues revealed (1) the vision of Abs. cerata is primarily UV-sensitive to environmental twilight, which determines when it begins its nocturnal activity, (2) the major expressed OR56d receptor may be correlated to suitable humidity sensing, and (3) Luc1-type luciferase is responsible for Abs. cerata's luminescent spectrum.

Keywords: Abscondita; Genome; Lampyridae; Luciferase; Nanopore; Olfaction; Vision; firefly.