Topographic distribution of inflammation factors in a healing aneurysm

J Neuroinflammation. 2023 Aug 2;20(1):182. doi: 10.1186/s12974-023-02863-1.

Abstract

Background: Healing of intracranial aneurysms following endovascular treatment relies on the organization of early thrombus into mature scar tissue and neointima formation. Activation and deactivation of the inflammation cascade plays an important role in this process. In addition to timely evolution, its topographic distribution is hypothesized to be crucial for successful aneurysm healing.

Methods: Decellularized saccular sidewall aneurysms were created in Lewis rats and coiled. At follow-up (after 3 days (n = 16); 7 days (n = 19); 21 days (n = 8)), aneurysms were harvested and assessed for healing status. In situ hybridization was performed for soluble inflammatory markers (IL6, MMP2, MMP9, TNF-α, FGF23, VEGF), and immunohistochemical analysis to visualize inflammatory cells (CD45, CD3, CD20, CD31, CD163, HLA-DR). These markers were specifically documented for five regions of interest: aneurysm neck, dome, neointima, thrombus, and adjacent vessel wall.

Results: Coiled aneurysms showed enhanced patterns of thrombus organization and neointima formation, whereas those without treatment demonstrated heterogeneous patterns of thrombosis, thrombus recanalization, and aneurysm growth (p = 0.02). In coiled aneurysms, inflammation markers tended to accumulate inside the thrombus and in the neointima (p < 0.001). Endothelial cells accumulated directly in the neointima (p < 0.0001), and their presence was associated with complete aneurysm healing.

Conclusion: The presence of proinflammatory cells plays a crucial role in aneurysm remodeling after coiling. Whereas thrombus organization is hallmarked by a pronounced intra-thrombotic inflammatory reaction, neointima maturation is characterized by direct invasion of endothelial cells. Knowledge concerning topographic distribution of regenerative inflammatory processes may pave the way for future treatment modalities which enhance aneurysm healing after endovascular therapy.

Keywords: Animal; Endovascular procedures; Inflammation; Intracranial aneurysm; Models; Neointima.

MeSH terms

  • Animals
  • Cicatrix
  • Embolization, Therapeutic*
  • Endothelial Cells
  • Inflammation / therapy
  • Intracranial Aneurysm*
  • Neointima / therapy
  • Rats
  • Rats, Inbred Lew
  • Thrombosis*