Highly selective etching of SiNxover SiO2using ClF3/Cl2remote plasma

Nanotechnology. 2023 Aug 29;34(46). doi: 10.1088/1361-6528/acec7a.

Abstract

Highly selective etching of silicon nitride over silicon oxide is one of the most important processes especially for the fabrication of vertical semiconductor devices including 3D NAND (Not And) devices. In this study, isotropic dry etching characteristics of SiNxand SiO2using ClF3/Cl2remote plasmas have been investigated. The increase of Cl2percent in ClF3/Cl2gas mixture increased etch selectivity of SiNxover SiO2while decreasing SiNxetch rate. By addition of 15% Cl to ClF3/Cl2, the etch selectivity higher than 500 could be obtained with the SiNxetch rate of ∼8 nm min-1, and the increase of Cl percent to 20% further increased the etch selectivity to higher than 1000. It was found that SiNxcan be etched through the reaction from Si-N to Si-F and Si-Cl (also from Si-Cl to Si-F) while SiO2can be etched only through the reaction from Si-O to Si-F, and which is also in extremely low reaction at room temperature. When SiNx/SiO2layer stack was etched using ClF3/Cl2(15%), extremely selective removal of SiNxlayer in the SiNx/SiO2layer stack could be obtained without noticeable etching of SiO2layer in the stack and without etch loading effect.

Keywords: 3D NAND; Cl2; chlorine monofluoride (ClF3); remote plasma etching; selective etching; silicon nitride (SiN x ); silicon oxide (SiO2).