Source apportionment of consumed volatile organic compounds in the atmosphere

J Hazard Mater. 2023 Oct 5:459:132138. doi: 10.1016/j.jhazmat.2023.132138. Epub 2023 Jul 24.

Abstract

Conventional source apportionments of ambient volatile organic compounds (VOCs) have been based on observed and initial concentrations after photochemical correction. However, these results have not been related to ozone (O3) and secondary organic aerosol (SOA) formation. Thus, the apportioned contributions could not effectively support secondary pollution control development. Source apportionment of the VOCs consumed in forming O3 and SOA is needed. A consumed VOC source apportionment approach was developed and applied to hourly speciated VOCs data from June to August 2022 measured in Laoshan, Qingdao. Biogenic emissions (56.3%), vehicle emissions (17.2%), and gasoline evaporation (9.37%) were the main sources of consumed VOCs. High consumed VOCs from biogenic emissions mainly occurred during transport from parks to the southwest and northwest of study site. During the O3 pollution period, biogenic emissions (46.3%), vehicle emissions (24.2%), and gasoline evaporation (14.3%) provided the largest contributions to the consumed VOCs. However, biogenic emissions contribution increased to 57.1% during the non-O3 pollution period, and vehicle emissions and gasoline evaporation decreased to 16.5% and 9.01%, respectively. Biogenic emissions and the mixed source of combustion sources and solvent use contributed the most to O3 and SOA formation potentials during the O3 pollution period, respectively.

Keywords: Consumed VOCs; Ozone; PMF; Photochemical loss; Source apportionment.