Tetracene Dimers: A Platform for Intramolecular Down- and Up-conversion

J Am Chem Soc. 2023 Aug 23;145(33):18260-18275. doi: 10.1021/jacs.3c02417. Epub 2023 Aug 2.

Abstract

Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.