The Structure of Terbium in the Ferromagnetic State

J Am Chem Soc. 2023 Aug 16;145(32):17856-17862. doi: 10.1021/jacs.3c04931. Epub 2023 Aug 2.

Abstract

Metals typically crystallize in highly symmetric structures due to their nondirectional and nonsaturated metallic bonds. Here, we report that terbium metal in its ferromagnetic state adopts an unusual low-symmetry orthorhombic structure with a Cmcm space group. A similar structure has been previously observed only in a few actinide metals with bonding 5f electrons at ambient pressure, such as uranium, neptunium, and plutonium, but with different nearest coordination numbers and bond-length variations. The Tb atom occupies the 4c site (0, ∼0.1661, 1/4), building up -[Tb-Tb]- layers stacking along the b-axis. Our first-principles many-body calculations of the crystal field splitting in the correlated Tb 4f-shell demonstrate that the Cmcm structure for ferromagnetic terbium is stabilized by magneto-elastic forces due to a secondary order of quadrupolar moments in the ferromagnetic state. These findings are significant for further understanding of the nature of terbium, including its electron structure, energy bands, phonons, and magnetism.