A facile synthesis of FeS/Fe3C nanoparticles highly dispersed on in situ grown N-doped CNTs as cathode electrocatalysts for microbial fuel cells

Phys Chem Chem Phys. 2023 Aug 16;25(32):21191-21199. doi: 10.1039/d3cp02152a.

Abstract

A novel composite of iron sulfide, iron carbide and nitrogen carbides (Nano-FeS/Fe3C@NCNTs) as a cathode electrocatalyst for microbial fuel cells (MFCs) is synthesized by a one-pot solid state reaction, which yields a unique configuration of FeS/Fe3C nanoparticles highly dispersed on in situ grown nitrogen-doped carbon nanotubes (NCNTs). The highly dispersed FeS/Fe3C nanoparticles possess large active sites, while the NCNTs provide an electronically conductive network. Consequently, the resultant Nano-FeS/Fe3C@NCNTs exhibit excellent electrocatalytic activity towards the oxygen reduction reaction (ORR), with a half-wave potential close to that of Pt/C (about 0.88 V vs. RHE), and enable MFCs to deliver a power density of 1.28 W m-2 after two weeks' operation, which is higher than that of MFCs with Pt/C as the cathode electrocatalyst (1.02 W m-2). Theoretical calculations and experimental data demonstrate that there is a synergistic effect between Fe3C and FeS in Nano-FeS/Fe3C@NCNTs. Fe3C presents a strong attraction and electron-donating tendency to oxygen molecules, serving as the main active component, while FeS reduces charge transfer resistance by transferring electrons to Fe3C, synergistically improving the kinetics of the ORR and power density of MFCs.