Microglial and Astrocytic Responses in the Human Midcingulate Cortex in Huntington's Disease

Ann Neurol. 2023 Nov;94(5):895-910. doi: 10.1002/ana.26753. Epub 2023 Aug 16.

Abstract

Objective: Patients with Huntington's disease can present with variable difficulties of motor functioning, mood, and cognition. Neurodegeneration occurs in the anterior cingulate cortex of some patients with Huntington's disease and is linked to the presentation of mood symptomatology. Neuroinflammation, perpetrated by activated microglia and astrocytes, has been reported in Huntington's disease and may contribute to disease progression and presentation. This study sought to quantify the density of mutant huntingtin protein and neuroinflammatory glial changes in the midcingulate cortex of postmortem patients with Huntington's disease and determine if either correlates with the presentation of mood, motor, or mixed symptomatology.

Methods: Free-floating immunohistochemistry quantified 1C2 immunolabeling density as an indicative marker of mutant huntingtin protein, and protein and morphological markers of astrocyte (EAAT2, Cx43, and GFAP), and microglial (Iba1 and HLA-DP/DQ/DR) activation. Relationships among the level of microglial activation, mutant huntingtin burden, and case characteristics were explored using correlative analysis.

Results: We report alterations in activated microglia number and morphology in the midcingulate cortex of Huntington's disease cases with predominant mood symptomatology. An increased proportion of activated microglia was observed in the midcingulate of all Huntington's disease cases and positively correlated with 1C2 burden. Alterations in the astrocytic glutamate transporter EAAT2 were observed in the midcingulate cortex of patients associated with mood symptoms.

Interpretation: This study presents pathological changes in microglia and astrocytes in the midcingulate cortex in Huntington's disease, which coincide with mood symptom presentation. These findings further the understanding of neuroinflammation in Huntington's disease, a necessary step for developing inflammation-targeted therapeutics. ANN NEUROL 2023;94:895-910.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astrocytes / metabolism
  • Gyrus Cinguli*
  • Humans
  • Huntingtin Protein / genetics
  • Huntington Disease* / pathology
  • Microglia / metabolism
  • Neuroinflammatory Diseases

Substances

  • Huntingtin Protein