Cardiac progenitor cell-derived extracellular vesicles promote angiogenesis through both associated- and co-isolated proteins

Commun Biol. 2023 Aug 1;6(1):800. doi: 10.1038/s42003-023-05165-7.

Abstract

Extracellular vesicles (EVs) are cell-derived lipid bilayer-enclosed particles that play a role in intercellular communication. Cardiac progenitor cell (CPC)-derived EVs have been shown to protect the myocardium against ischemia-reperfusion injury via pro-angiogenic effects. However, the mechanisms underlying CPC-EV-induced angiogenesis remain elusive. Here, we discovered that the ability of CPC-EVs to induce in vitro angiogenesis and to stimulate pro-survival pathways was lost upon EV donor cell exposure to calcium ionophore. Proteomic comparison of active and non-active EV preparations together with phosphoproteomic analysis of activated endothelial cells identified the contribution of candidate protein PAPP-A and the IGF-R signaling pathway in EV-mediated cell activation, which was further validated using in vitro angiogenesis assays. Upon further purification using iodixanol gradient ultracentrifugation, EVs partly lost their activity, suggesting a co-stimulatory role of co-isolated proteins in recipient cell activation. Our increased understanding of the mechanisms of CPC-EV-mediated cell activation will pave the way to more efficient EV-based therapeutics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endothelial Cells*
  • Extracellular Vesicles* / metabolism
  • Myocardium / metabolism
  • Proteomics
  • Stem Cells / metabolism